Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 152
Filtrar
1.
Genome Biol Evol ; 16(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38302111

RESUMO

The evolution of reproductive mode is expected to have profound impacts on the genetic composition of populations. At the same time, ecological interactions can generate close associations among species, which can in turn generate a high degree of overlap in their spatial distributions. Caenorhabditis elegans is a hermaphroditic nematode that has enabled extensive advances in developmental genetics. Caenorhabditis inopinata, the sister species of C. elegans, is a gonochoristic nematode that thrives in figs and obligately disperses on fig wasps. Here, we describe patterns of genomic diversity in C. inopinata. We performed RAD-seq on individual worms isolated from the field across three Okinawan island populations. C. inopinata is about five times more diverse than C. elegans. Additionally, C. inopinata harbors greater differences in diversity among functional genomic regions (such as between genic and intergenic sequences) than C. elegans. Conversely, C. elegans harbors greater differences in diversity between high-recombining chromosome arms and low-recombining chromosome centers than C. inopinata. FST is low among island population pairs, and clear population structure could not be easily detected among islands, suggesting frequent migration of wasps between islands. These patterns of population differentiation appear comparable with those previously reported in its fig wasp vector. These results confirm many theoretical population genetic predictions regarding the evolution of reproductive mode and suggest C. inopinata population dynamics may be driven by wasp dispersal. This work sets the stage for future evolutionary genomic studies aimed at understanding the evolution of sex as well as the evolution of ecological interactions.


Assuntos
Caenorhabditis , Ficus , Animais , Caenorhabditis elegans/genética , Ficus/genética , Caenorhabditis/genética , Genética Populacional , Genômica
2.
J Mol Evol ; 92(1): 42-60, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38280051

RESUMO

Fig wasps (Agaonidae; Hymenoptera) are the only pollinating insects of fig trees (Ficus; Moraceae), forming the most closely and highly specific mutualism with the host. We used transcriptome sequences of 25 fig wasps from six genera to explore the evolution of key molecular components of fig wasp chemosensory genes: odorant-binding proteins (OBPs) and chemosensory proteins (CSPs). We identified a total 321 OBPs and 240 CSPs, with each species recording from 6 to 27 OBP genes and 6-19 CSP genes. 318 OBP genes are clustered into 17 orthologous groups and can be divided into two groups: PBP sensitive to pheromone and GOBP sensitive to general odor molecules, such as alcohols, esters, acids, ketones, and terpenoids. 240 CSP genes are clustered into 12 orthologous groups, which can be divided into three major groups and have functions, such as olfactory, tissue formation and/or regeneration, developmental, and some specific and unknown function. The gene sequences of most orthologous groups vary greatly among species and are consistent with the phylogenetic relationships between fig wasps. Strong purifying selection of both OBP and CSP genes was detected, as shown by low ω values. A positive selection was detected in one locus in CSP1. In conclusion, the evolution of chemosensory proteins OBPs and CSPs in fig wasps is relatively conservative, and they play an indispensable role in the life activities of fig wasps. Our results provide a starting point for understanding the molecular basis of the chemosensory systems of fig wasps.


Assuntos
Ficus , Vespas , Animais , Filogenia , Vespas/genética , Ficus/genética , Odorantes , Simbiose
3.
BMC Genomics ; 24(1): 657, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37914998

RESUMO

Wolbachia is a genus of maternally inherited endosymbionts that can affect reproduction of their hosts and influence metabolic processes. The pollinator, Valisia javana, is common in the male syconium of the dioecious fig Ficus hirta. Based on a high-quality chromosome-level V. javana genome with PacBio long-read and Illumina short-read sequencing, we discovered a sizeable proportion of Wolbachia sequences and used these to assemble two novel Wolbachia strains belonging to supergroup A. We explored its phylogenetic relationship with described Wolbachia strains based on MLST sequences and the possibility of induction of CI (cytoplasmic incompatibility) in this strain by examining the presence of cif genes known to be responsible for CI in other insects. We also identified mobile genetic elements including prophages and insertion sequences, genes related to biotin synthesis and metabolism. A total of two prophages and 256 insertion sequences were found. The prophage WOjav1 is cryptic (structure incomplete) and WOjav2 is relatively intact. IS5 is the dominant transposon family. At least three pairs of type I cif genes with three copies were found which may cause strong CI although this needs experimental verification; we also considered possible nutritional effects of the Wolbachia by identifying genes related to biotin production, absorption and metabolism. This study provides a resource for further studies of Wolbachia-pollinator-host plant interactions.


Assuntos
Ficus , Wolbachia , Ficus/genética , Wolbachia/genética , Biotina/genética , Simbiose/genética , Filogenia , Elementos de DNA Transponíveis/genética , Tipagem de Sequências Multilocus , Prófagos/genética , Reprodução
4.
PLoS One ; 18(11): e0294315, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37972084

RESUMO

Sweet fig (M. acuminata cv. Sotoumon) is an economically important dessert banana in Benin, with high nutritional, medicinal, and cultural values. Nevertheless, its productivity and yield are threatened by biotic and abiotic stresses. Relevant knowledge of the genetic diversity of this economically important crop is essential for germplasm conservation and the development of breeding programs. However, very little is known about the genetic makeup of this cultivar in Benin. To advance the understanding of genetic diversity in sweet fig banana germplasm, a Genotype-By-Sequencing (GBS) was performed on a panel of 273 accessions collected in different phytogeographical zones of Benin. GBS generated 8,457 quality SNPs, of which 1992 were used for analysis after filtering. The results revealed a low diversity in the studied germplasm (He = 0.0162). Genetic differentiation was overall very low in the collection as suggested by the negative differentiation index (Fstg = -0.003). The Analysis of Molecular Variance (AMOVA) indicated that the variation between accessions within populations accounted for 83.8% of the total variation observed (P < 0.001). The analysis of population structure and neighbor-joining tree partitioned the germplasm into three clusters out of which a predominant major one contained 98.1% of all accessions. These findings demonstrate that current sweet fig banana genotypes shared a common genetic background, which made them vulnerable to biotic and abiotic stress. Therefore, broadening the genetic base of the crop while maintaining its quality attributes and improving yield performance is of paramount importance. Moreover, the large genetic group constitutes an asset for future genomic selection studies in the crop and can guide the profiling of its conservation strategies.


Assuntos
Ficus , Musa , Anormalidades Musculoesqueléticas , Musa/genética , Ficus/genética , Benin , Papua Nova Guiné , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único , Variação Genética
5.
Plant Biol (Stuttg) ; 25(6): 981-993, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37565537

RESUMO

In Ficus septica, the short-term control of isoprene production and, therefore, isoprene emission has been linked to the hormone balance between auxin (IAA) and jasmonic acid (JA). However, the relationship between long-term changes in isoprene emission and that of plant hormones remains unknown. This study tracked isoprene emissions from F. septica leaves, plant hormone concentrations and signalling gene expression, MEP pathway metabolite concentrations, and related enzyme gene expression for 1 year in the field to better understand the role of plant hormones and their long-term control. Seasonality of isoprenes was mainly driven by temperature- and light-dependent variations in substrate availability through the MEP route, as well as transcriptional and post-transcriptional control of isoprene synthase (IspS). Isoprene emissions are seasonally correlated with plant hormone levels. This was especially evident in the cytokinin profiles, which decreased in summer and increased in winter. Only 4-hydroxy-3-methylbut-2-butenyl-4-diphosphate (HMBDP) exhibited a positive connection with cytokinins among the MEP metabolites examined, suggesting that HMBDP and its biosynthetic enzyme, HMBDP synthase (HDS), play a role in channelling of MEP pathway metabolites to cytokinin production. Thus, it is probable that cytokinins have potential feed-forward regulation of isoprene production. Under long-term natural conditions, the hormonal balance of IAA/JA-Ile was not associated with IspS transcripts or isoprene emissions. This study builds on prior work by revealing differences between short- and long-term hormonal modulation of isoprene emissions in the tropical tree F. septica.


Assuntos
Ficus , Reguladores de Crescimento de Plantas , Reguladores de Crescimento de Plantas/metabolismo , Estações do Ano , Ficus/genética , Ficus/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Hemiterpenos/metabolismo , Butadienos/metabolismo , Citocininas/metabolismo , Hormônios/metabolismo , Folhas de Planta/metabolismo , Pentanos/metabolismo
6.
Proc Natl Acad Sci U S A ; 120(28): e2222035120, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37399402

RESUMO

Studies investigating the evolution of flowering plants have long focused on isolating mechanisms such as pollinator specificity. Some recent studies have proposed a role for introgressive hybridization between species, recognizing that isolating processes such as pollinator specialization may not be complete barriers to hybridization. Occasional hybridization may therefore lead to distinct yet reproductively connected lineages. We investigate the balance between introgression and reproductive isolation in a diverse clade using a densely sampled phylogenomic study of fig trees (Ficus, Moraceae). Codiversification with specialized pollinating wasps (Agaonidae) is recognized as a major engine of fig diversity, leading to about 850 species. Nevertheless, some studies have focused on the importance of hybridization in Ficus, highlighting the consequences of pollinator sharing. Here, we employ dense taxon sampling (520 species) throughout Moraceae and 1,751 loci to investigate phylogenetic relationships and the prevalence of introgression among species throughout the history of Ficus. We present a well-resolved phylogenomic backbone for Ficus, providing a solid foundation for an updated classification. Our results paint a picture of phylogenetically stable evolution within lineages punctuated by occasional local introgression events likely mediated by local pollinator sharing, illustrated by clear cases of cytoplasmic introgression that have been nearly drowned out of the nuclear genome through subsequent lineage fidelity. The phylogenetic history of figs thus highlights that while hybridization is an important process in plant evolution, the mere ability of species to hybridize locally does not necessarily translate into ongoing introgression between distant lineages, particularly in the presence of obligate plant-pollinator relationships.


Assuntos
Ficus , Vespas , Animais , Ficus/genética , Filogenia , Genômica , Isolamento Reprodutivo , Vespas/genética , Polinização/genética
7.
BMC Plant Biol ; 23(1): 321, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37322436

RESUMO

BACKGROUND: Understanding biodiversity patterns and their underlying mechanisms is of interest to ecologists, biogeographers and conservationists and is critically important for conservation efforts. The Indo-Burma hotspot features high species diversity and endemism, yet it also faces significant threats and biodiversity losses; however, few studies have explored the genetic structure and underlying mechanisms of Indo-Burmese species. Here, we conducted a comparative phylogeographic analysis of two closely related dioecious Ficus species, F. hispida and F. heterostyla, based on wide and intensive population sampling across Indo-Burma ranges, using chloroplast (psbA-trnH, trnS-trnG) and nuclear microsatellite (nSSR) markers, as well as ecological niche modeling. RESULTS: The results indicated large numbers of population-specific cpDNA haplotypes and nSSR alleles in the two species. F. hispida showed slightly higher chloroplast diversity but lower nuclear diversity than F. heterostyla. Low-altitude mountainous areas of northern Indo-Burma were revealed to have high genetic diversity and high habitat suitability, suggesting potential climate refugia and conservation priority areas. Strong phylogeographic structure and a marked east‒west differentiation pattern were observed in both species, due to the interactions between biotic and abiotic factors. Interspecific dissimilarities at fine-scale genetic structure and asynchronized historical dynamics of east‒west differentiation between species were also detected, which were attributed to different species-specific traits. CONCLUSIONS: We confirm hypothesized predictions that interactions between biotic and abiotic factors largely determine the patterns of genetic diversity and phylogeographic structure of Indo-Burmese plants. The east‒west genetic differentiation pattern observed in two targeted figs can be generalized to some other Indo-Burmese plants. The results and findings of this work will contribute to the conservation of Indo-Burmese biodiversity and facilitate targeted conservation efforts for different species.


Assuntos
Ficus , Ficus/genética , Mianmar , Filogeografia , Biodiversidade , Deriva Genética , Variação Genética
8.
BMC Plant Biol ; 23(1): 320, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37316788

RESUMO

BACKGROUND: The fig (Ficus carica L.) tree has high economic value. However, its fruit have a short shelf life due to rapid softening. Polygalacturonases (PGs) are essential hydrolases, responsible for the pectin degradation that plays a key role in fruit softening. However, fig PG genes and their regulators have not yet been characterized. RESULTS: In this study, 43 FcPGs were identified in the fig genome. They were non-uniformly distributed on 13 chromosomes, and tandem repeat PG gene clusters were found on chromosomes 4 and 5. Ka/Ks calculation and collinear analysis indicated negative selection as the main driver of FcPG family expansion. Fourteen FcPGs were found expressed in fig fruit with FPKM values > 10, of which seven were positively correlated, and three, negatively correlated with fruit softening. Eleven FcPGs were upregulated and two downregulated in response to ethephon treatment. FcPG12, a member of the tandem repeat cluster on chromosome 4, was selected for further analyses due to its sharp increment in transcript abundance during fruit softening and its response to ethephon treatment. Transient overexpression of FcPG12 led to decreased fig fruit firmness and increased PG enzyme activity in the tissue. Two ethylene response factor (ERF)-binding GCC-box sites were found on the FcPG12 promoter. Yeast one-hybrid and dual luciferase assays showed that FcERF5 binds directly to the FcPG12 promoter and upregulates its expression. Transient overexpression of FcERF5 upregulated FcPG12 expression, thereby increasing PG activity and fruit softening. CONCLUSIONS: Our study identified FcPG12 as a key PG gene in fig fruit softening, and its direct positive regulation by FcERF5. The results provide new information on the molecular regulation of fig fruit softening.


Assuntos
Ficus , Poligalacturonase , Poligalacturonase/genética , Ficus/genética , Frutas/genética , Hidrolases
9.
Sci Rep ; 13(1): 5642, 2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-37024518

RESUMO

For thousands of years, humans have domesticated different plants by selecting for particular characters, often affecting less-known traits, including the volatile organic compounds (VOCs) emitted by these plants for defense or reproduction. The fig tree Ficus carica has a very wide range of varieties in the Mediterranean region and is selected for its traits affecting fruits, including pollination, but the effect of human-driven diversification on the VOCs emitted by the receptive figs to attract their pollinator (Blastophaga psenes) is not known. In the present study, VOCs from receptive figs of eight varieties in northern Morocco, were collected at different times within the manual pollination period and analyzed by gas chromatography-mass spectrometry. Genetic analyses using microsatellite loci were performed on the same varieties. Despite strong inter-varietal differences in the quantity and relative proportions of all VOCs, the relative proportions of the four pollinator-attractive VOCs showed limited variation among varieties. There was no significant correlation between genetic markers and chemical profiles of the different varieties. While diversification driven by humans has led to differences between varieties in VOC profiles, this paper suggests that throughout the process of domestication and varietal diversification, stabilizing selection has maintained a strong signal favoring pollinator attraction.


Assuntos
Ficus , Odorantes , Ficus/genética , Flores/genética , Flores/química , Odorantes/análise , Polinização , Árvores
10.
PeerJ ; 11: e14406, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36718451

RESUMO

Glutathione S-transferase (GSTs), a large and diverse group of multi-functional enzymes (EC 2.5.1.18), are associated with cellular detoxification, various biotic and abiotic stress responses, as well as secondary metabolites transportation. Here, 53 members of the FcGST gene family were screened from the genome database of fig (Ficus carica), which were further classified into five subfamilies, and the tau and phi were the major subfamilies. These genes were unevenly distributed over all the 13 chromosomes, and 12 tandem and one segmental duplication may contribute to this family expansion. Syntenic analysis revealed that FcGST shared closer genetic evolutionary origin relationship with species from the Ficus genus of the Moraceae family, such as F. microcarpa and F. hispida. The FcGST members of the same subfamily shared similar gene structure and motif distribution. The α helices were the chief structure element in predicted secondary and tertiary structure of FcGSTs proteins. GO and KEGG indicated that FcGSTs play multiple roles in glutathione metabolism and stress reactions as well as flavonoid metabolism. Predictive promoter analysis indicated that FcGSTs gene may be responsive to light, hormone, stress stimulation, development signaling, and regulated by MYB or WRKY. RNA-seq analysis showed that several FcGSTs that mainly expressed in the female flower tissue and peel during 'Purple-Peel' fig fruit development. Compared with 'Green Peel', FcGSTF1, and FcGSTU5/6/7 exhibited high expression abundance in the mature fruit purple peel. Additionally, results of phylogenetic sequences analysis, multiple sequences alignment, and anthocyanin content together showed that the expression changes of FcGSTF1, and FcGSTU5/6/7 may play crucial roles in fruit peel color alteration during fruit ripening. Our study provides a comprehensive overview of the GST gene family in fig, thus facilitating the further clarification of the molecular function and breeding utilization.


Assuntos
Ficus , Ficus/genética , Glutationa Transferase/genética , Frutas/genética , Filogenia , Melhoramento Vegetal
11.
Gene ; 850: 146953, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36243214

RESUMO

The mechanisms of chemoreception in fig wasps (Hymenoptera, Agaonidae) are of primary importance in their co-evolutionary relationship with the fig trees they pollinate. We used transcriptome sequences of 25 fig wasps in six genera that allowed a comparative approach to the evolution of key molecular components of fig wasp chemoreception: their odorant (OR) and gustatory (GR) receptor genes. In total, we identified 311 ORs and 47 GRs, with each species recording from 5 to 30 OR genes and 1-4 GR genes. 304 OR genes clustered into 18 orthologous groups known to be sensitive to cuticular hydrocarbons (CHC), pheromones, acids, alcohols and a variety of floral scents such as cineole, Linalool, and Heptanone. 45 GR genes clustered into 4 orthologous groups that contain sweet, bitter, CO2 and undocumented receptors. Gene sequences in most orthologous groups varied greatly among species, except for ORco (60.0% conserved) and sweet receptors (30.7% conserved). Strong purifying selection of both odorant and gustatory genes was detected, as shown by low ω values. Signatures of positive selection were detected in loci from both OR and GR orthologous groups. Fig wasps have relatively few olfactory and especially gustatory receptors, reflecting the natural history of the system. Amino acid sequences nonetheless vary significantly between species and are consistent with the phylogenetic relationships among fig wasps. The differences in ORs within some orthologous groups from the same species, but different hosts and from closely related species from one host can reach as low as 49.3% and 9.8% respectively, implying the ORs of fig wasps can evolve rapidly to novel ecological environments. Our results provide a starting point for understanding the molecular basis of the chemosensory systems of fig wasps.


Assuntos
Ficus , Vespas , Animais , Dióxido de Carbono , Eucaliptol , Ficus/genética , Feromônios , Filogenia , Polinização , Simbiose , Vespas/genética
12.
PLoS One ; 17(12): e0279849, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36584179

RESUMO

Due to maternal inheritance and minimal rearrangement, the chloroplast genome is an important genetic resource for evolutionary studies. However, the evolutionary dynamics and phylogenetic performance of chloroplast genomes in closely related species are poorly characterized, particularly in taxonomically complex and species-rich groups. The taxonomically unresolved Ficus sarmentosa species complex (Moraceae) comprises approximately 20 taxa with unclear genetic background. In this study, we explored the evolutionary dynamics, hotspot loci, and phylogenetic performance of thirteen chloroplast genomes (including eleven newly obtained and two downloaded from NCBI) representing the F. sarmentosa complex. Their sequence lengths, IR boundaries, repeat sequences, and codon usage were compared. Both sequence length and IR boundaries were found to be highly conserved. All four categories of long repeat sequences were found across all 13 chloroplast genomes, with palindromic and forward sequences being the most common. The number of simple sequence repeat (SSR) loci varied from 175 (F. dinganensis and F. howii) to 190 (F. polynervis), with the dinucleotide motif appearing the most frequently. Relative synonymous codon usage (RSCU) analysis indicated that codons ending with A/T were prior to those ending with C/T. The majority of coding sequence regions were found to have undergone negative selection with the exception of ten genes (accD, clpP, ndhK, rbcL, rpl20, rpl22, rpl23, rpoC1, rps15, and rps4) which exhibited potential positive selective signatures. Five hypervariable genic regions (rps15, ycf1, rpoA, ndhF, and rpl22) and five hypervariable intergenic regions (trnH-GUG-psbA, rpl32-trnL-UAG, psbZ-trnG-GCC, trnK-UUU-rps16 and ndhF-rpl32) were identified. Overall, phylogenomic analysis based on 123 Ficus chloroplast genomes showed promise for studying the evolutionary relationships in Ficus, despite cyto-nuclear discordance. Furthermore, based on the phylogenetic performance of the F. sarmentosa complex and F. auriculata complex, the chloroplast genome also exhibited a promising phylogenetic resolution in closely related species.


Assuntos
Ficus , Genoma de Cloroplastos , Filogenia , Ficus/genética , Sequências Repetitivas de Ácido Nucleico , Códon/genética
13.
BMC Plant Biol ; 22(1): 334, 2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35820829

RESUMO

BACKGROUND: Wuzhimaotao (Radix Fici Hirtae) originates from the dry root of Ficus hirta (Moraceae), which is widely known as a medical and edible plant distributed in South China. As the increasing demand for Wuzhimaotao, the wild F. hirta has been extremely reduced during the past years. It is urgent to protect and rationally develop the wild resources of F. hirta for its sustainable utilization. However, a lack of genetic background of F. hirta makes it difficult to plan conservation and breeding strategies for this medical plant. In the present study, a total of 414 accessions of F. hirta from 7 provinces in southern China were evaluated for the population genetics using 9 polymorphic SSR markers. RESULTS: A mean of 17.1 alleles per locus was observed. The expected heterozygosity (He) varied from 0.142 to 0.861 (mean = 0.706) in nine SSR loci. High genetic diversity (He = 0.706, ranged from 0.613 to 0.755) and low genetic differentiation among populations (G'ST = 0.147) were revealed at population level. In addition, analysis of molecular variance (AMOVA) indicated that the principal molecular variance existed within populations (96.2%) was significantly higher than that among populations (3.8%). Meanwhile, the three kinds of clustering methods analysis (STRUCTURE, PCoA and UPGMA) suggested that the sampled populations were clustered into two main genetic groups (K = 2). Mantel test showed a significant correlation between geographic and genetic distance among populations (R2 = 0.281, P < 0.001). Pollen flow, seed flow and/or geographical barriers might be the main factors that formed the current genetic patterns of F. hirta populations. CONCLUSIONS: This is a comprehensive study of genetic diversity and population structure of F. hirta in southern China. We revealed the high genetic diversity and low population differentiation in this medicinal plant and clarified the causes of its current genetic patterns. Our study will provide novel insights into the exploitation and conservation strategies for F. hirta.


Assuntos
Ficus , Cruzamento , Ficus/genética , Variação Genética , Genética Populacional , Repetições de Microssatélites/genética
14.
PeerJ ; 10: e13798, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35898939

RESUMO

The auxin response factor (ARF) combines with AuxREs cis-acting elements in response to auxin to regulate plant development. To date, no comprehensive analysis of ARF genes expressed during fruit development has been conducted for common fig (Ficus carica L.). In this study, members of the FcARF gene family were screened, identified in the fig genome database and their features characterized using bioinformatics. Twenty FcARF genes were clustered into three classes, with almost similar highly conserved DBD (B3-like DNA binding domain), AUX/IAA (auxin/indole-3-acetic acid gene family) and MR domain structure among class members. Analysis of amino acid species in MR domain revealed 10 potential transcription activators and 10 transcription inhibitors, and 17 FcARF members were predicted to be located in the nucleus. DNA sequence analysis showed that the ARF gene family consisted of 4-25 exons, and the promoter region contained 16 cis-acting elements involved in stress response, hormone response and flavonoid biosynthesis. ARF genes were expressed in most tissues of fig, especially flower and peel. Transcriptomics analysis results showed that FcARF2, FcARF11 and FcARF12, belonging to class-Ia, were stably and highly expressed in the early development stage of flower and peel of 'Purple peel' fig. However, their expression levels decreased after maturity. Expression of class-Ic member FcARF3 conformed to the regularity of fig fruit development. These four potential transcription inhibitors may regulate fruit growth and development of 'Purple Peel' fig. This study provides comprehensive information on the fig ARF gene family, including gene structure, chromosome position, phylogenetic relationship and expression pattern. Our work provides a foundation for further research on auxin-mediated fig fruit development.


Assuntos
Ficus , Ficus/genética , Frutas/genética , Filogenia , Ácidos Indolacéticos/metabolismo , Perfilação da Expressão Gênica
15.
Pak J Biol Sci ; 25(5): 415-425, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35638512

RESUMO

<b>Background and Objective:</b> <i>In vitro</i> propagation of fig (<i>Ficus carica</i> L.) is one of the possible approaches that may be used to maximize the diversity of plant species. The current work was carried out to evaluate genetic stability of micropropagated fig plantlets and to determine the effect of <i>in vitro </i>propagation on genomic content of Saudi fig. <b>Materials and Methods:</b> The start codon-targeted (SCoT), DNA-barcoding chloroplast gene RNA polymerase1 (<i>rpoC1</i> sequencing) and total protein profiling assays (SDS-PAGE) techniques were used to detect genetic stability in micropropagated fig plantlets. <b>Results:</b> The Scorable PCR bands were produced with 10 SCoT primers used, where the total number of bands was 135 bands. Twenty polymorphic bands were generated with 18.4% of a polymorphism percentage. According to the result, no visual unique bands were generated which confirmed the genetic homogeneity of micropropagated plantlets samples compared to the control sample (mother plant). Sequence analysis and phylogenetic tree generated using fig <i>rpoC1</i> sequence showed high similarity between control and plantlets samples of fig plant. The protein profiling results revealed no remarkable changes between micropropagated plantlets and the mother plant. <b>Conclusion:</b> The results indicate that using SCoT, DNA barcoding and protein profiling have demonstrated their utility to detect genetic homogeneity in micropropagated fig plantlets, which suggests using of micropropagation protocol of plants applied on the plantlets in the current study as a reliable protocol for <i>in vitro</i> culture and conservation of fig plant.


Assuntos
Ficus , Códon de Iniciação , DNA de Plantas/genética , Eletroforese em Gel de Poliacrilamida , Ficus/genética , Marcadores Genéticos , Filogenia
16.
BMC Plant Biol ; 22(1): 253, 2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35606691

RESUMO

BACKGROUND: The large genus Ficus comprises approximately 800 species, most of which possess high ornamental and ecological values. However, its evolutionary history remains largely unknown. Plastome (chloroplast genome) analysis had become an essential tool for species identification and for unveiling evolutionary relationships between species, genus and other rank groups. In this work we present the plastomes of ten Ficus species. RESULTS: The complete chloroplast (CP) genomes of eleven Ficus specimens belonging to ten species were determined and analysed. The full length of the Ficus plastome was nearly 160 kbp with a similar overall GC content, ranging from 35.88 to 36.02%. A total of 114 unique genes, distributed in 80 protein-coding genes, 30 tRNAs, and 4 rRNAs, were annotated in each of the Ficus CP genome. In addition, these CP genomes showed variation in their inverted repeat regions (IR). Tandem repeats and mononucleotide simple sequence repeat (SSR) are widely distributed across the Ficus CP genome. Comparative genome analysis showed low sequence variability. In addition, eight variable regions to be used as potential molecular markers were proposed for future Ficus species identification. According to the phylogenetic analysis, these ten Ficus species were clustered together and further divided into three clades based on different subgenera. Simultaneously, it also showed the relatedness between Ficus and Morus. CONCLUSION: The chloroplast genome structure of 10 Ficus species was similar to that of other angiosperms, with a typical four-part structure. Chloroplast genome sizes vary slightly due to expansion and contraction of the IR region. And the variation of noncoding regions of the chloroplast genome is larger than that of coding regions. Phylogenetic analysis showed that these eleven sampled CP genomes were divided into three clades, clustered with species from subgenus Urostigma, Sycomorus, and Ficus, respectively. These results support the Berg classification system, in which the subgenus Ficus was further decomposed into the subgenus Sycomorus. In general, the sequencing and analysis of Ficus plastomes, especially the ones of species with no or limited sequences available yet, contribute to the study of genetic diversity and species evolution of Ficus, while providing useful information for taxonomic and phylogenetic studies of Ficus.


Assuntos
Ficus , Genoma de Cloroplastos , Composição de Bases , Ficus/genética , Genoma de Cloroplastos/genética , Repetições de Microssatélites/genética , Filogenia
17.
DNA Res ; 29(3)2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35595238

RESUMO

Fig wasp has always been thought the species-specific pollinator for their host fig (Moraceae, Ficus) and constitute a model system with its host to study co-evolution and co-speciation. The availability of a high-quality genome will help to further reveal the mechanisms underlying these characteristics. Here, we present a high-quality chromosome-level genome for Valisa javana developed by a combination of PacBio long-read and Illumina short-read. The assembled genome size is 296.34 Mb from 13 contigs with a contig N50 length of 26.76 kb. Comparative genomic analysis revealed expanded and positively selected genes related to biological features that aid fig wasps living in syconium of its highly specific host. Protein-coding genes associated with chemosensory, detoxification and venom genes were identified. Several differentially expressed genes in transcriptome data of V. javana between odor-stimulated samples and the controls have been identified in some olfactory signal transduction pathways, e.g. olfactory transduction, cAMP, cGMP-PKG, Calcim, Ras and Rap1. This study provides a valuable genomic resource for a fig wasp, and sheds insight into further revealing the mechanisms underlying their adaptive traits to their hosts in different places and co-speciation with their host.


Assuntos
Ficus , Vespas , Animais , Cromossomos , Ficus/genética , Filogenia , Simbiose , Vespas/genética
18.
Commun Biol ; 5(1): 284, 2022 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-35396571

RESUMO

The obligate pollination mutualism between figs (Ficus, Moraceae) and pollinator wasps (Agaonidae, Hymenoptera) is a classic example of cospeciation. However, examples of phylogenetic incongruencies between figs and their pollinators suggest that pollinators may speciate by host shifting. To investigate the mechanism of speciation by host shifting, we examined the phylogenetic relationships and population genetic structures of six closely related fig species and their pollinators from southern China and Taiwan-Ryukyu islands using various molecular markers. The results revealed 1) an extraordinary case of pollinator sharing, in which five distinct fig species share a single pollinator species in southern China; 2) two types of copollination, namely, sympatric copollination by pollinator duplication or pollinator migration, and allopatric copollination by host migration and new pollinator acquisition; 3) fig species from southern China have colonized Taiwan repeatedly and one of these events has been followed by host shifting, reestablishment of host specificity, and pollinator speciation, in order. Based on our results, we propose a model for pollinator speciation by host shifting in which the reestablishment of host-specificity plays a central role in the speciation process. These findings provide important insights into understanding the mechanisms underlying pollinator speciation and host specificity in obligate pollination mutualism.


Assuntos
Ficus , Vespas , Animais , Ficus/genética , Filogenia , Polinização , Simbiose , Vespas/genética
19.
BMC Genomics ; 23(1): 170, 2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35236292

RESUMO

BACKGROUND: Jasmonate-ZIM domain (JAZ) repressors negatively regulate signal transduction of jasmonates, which regulate plant development and immunity. However, no comprehensive analysis of the JAZ gene family members has been done in the common fig (Ficus carica L.) during fruit development and hormonal treatment. RESULTS: In this study, 10 non-redundant fig JAZ family genes (FcJAZs) distributed on 7 chromosomes were identified in the fig genome. Phylogenetic and structural analysis showed that FcJAZ genes can be grouped into 5 classes. All the classes contained relatively complete TIFY and Jas domains. Yeast two hybrid (Y2H) results showed that all FcJAZs proteins may interact with the identified transcription factor, FcMYC2. Tissue-specific expression analysis showed that FcJAZs were highly expressed in the female flowers and roots. Expression patterns of FcJAZs during the fruit development were analyzed by RNA-Seq and qRT-PCR. The findings showed that, most FcJAZs were significantly downregulated from stage 3 to 5 in the female flower, whereas downregulation of these genes was observed in the fruit peel from stage 4 to 5. Weighted-gene co-expression network analysis (WGCNA) showed the expression pattern of FcJAZs was correlated with hormone signal transduction and plant-pathogen interaction. Putative cis-elements analysis of FcJAZs and expression patterns of FcJAZs which respond to hormone treatments revealed that FcJAZs may regulate fig fruit development by modulating the effect of ethylene or gibberellin. CONCLUSIONS: This study provides a comprehensive analysis of the FcJAZ family members and provides information on FcJAZs contributions and their role in regulating the common fig fruit development.


Assuntos
Ficus , Ciclopentanos/metabolismo , Ciclopentanos/farmacologia , Ficus/genética , Ficus/metabolismo , Frutas , Regulação da Expressão Gênica de Plantas , Hormônios/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
20.
PLoS One ; 17(2): e0263715, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35130323

RESUMO

To date all public records of F. carica SSR profiles are from NCGR Davis. Prior studies of this data have not been received well because several of the stated relationships do not match what is observed in the field. Upon examination of the prior authors methods it is found that the 1979 Nei similarity measures are not valid distance metrics for the profiles thus invalidating their analysis of genetic distance. Further, the data are tensor in nature and it is shown here that "flattening the data" for use in a vector method will change the problem under study. Consequently the present analysis focuses on geometric, statistical, and biostatistical tensor-based methods-finding that only the latter produces results matching what is manually observed among the profiles. Combining this with historical breeding records and morphologic observations reveals that a modest portion of the profiled accessions are mislabeled-and also reveals the existence of previously undocumented close relations. Another area of concern in the prior studies is the statistical partitioning of the complete graph of distances to define clades. In the present analysis it is shown that genetic clades cannot be defined in this profile collection due to lack of cohesion in nearest neighbor components. It is also shown that it is presently intractable to significantly rectify gaps in the sample population by profile enrichment because the number of individuals in an entire population within the estimated profile distribution exceeds 1014. The profiles themselves are found to have very few occurrences of common values between the 15 loci and thus according to Fisher's theory of epistatic variance no correlation to phenotype attributes is expected-a result verified by the original investigators. Therefore further discovery of appropriate markers is needed to fully capture geno- and pheno-type characteristics in F. carica and F. palmata SSR profiles.


Assuntos
Ficus/classificação , Ficus/genética , Repetições de Microssatélites/genética , Alelos , Cruzamento , Cruzamentos Genéticos , Impressões Digitais de DNA/métodos , DNA de Plantas/genética , Perfil Genético , Especiação Genética , Variação Genética , Genótipo , Modelos Estatísticos , Fenótipo , Filogenia , Polimorfismo Genético
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...